Skip to main content

Mari L. Shinohara

Associate Professor of Immunology
Campus Mail: 338JONES Building, 207 Researc, Box 3010 DUMC, Durham, NC 27710
Phone: (919) 613-6977
Email: mari.shinohara@duke.edu

We need to mount a strong immune response against pathogens during infections, but excessive and uncontrolled immune reactions can lead to autoimmunity.  How does our immune system keep the balance fine-tuned?  This is a central question being asked in my laboratory.

Immune system needs to detect pathogens quickly and effectively.  This is performed by the innate immune system, which includes cells such as macrophages and dendritic cells (DCs).  Pathogens are recognized by pattern recognition receptors (PRRs) and may be cleared in the innate immune system.  However, when pathogens cannot be eliminated by innate immunity, the adaptive immune system participates by exploiting the ability of T cells and B cells.  The two immune systems work together not only to clear pathogens effectively but also to avoid collateral damages by from our own immune responses.

In my lab, we use mouse models for infectious and autoimmune diseases to understand the cellular and molecular mechanisms of; pathogen recognition by PRRs in macrophages and DCs, initiation of inflammatory responses in the innate immune system, and the impact of innate immune inflammation on the development and regulation of T cell-mediated adaptive immune responses.

Several projects are ongoing in the lab.  They are; (1) elucidating the role of the NLRP3 inflammasome, an innate immune sensor of pathogens and endogenous danger signals, in T-cell mediated pathology of EAE (an animal model of multiple sclerosis), (2) dissecting molecular mechanisms of pathogen recognition through Toll-like receptors (TLRs) and c-type lectin receptors (CLRs) and of downregulating  hyperinflammation, (3) molecular and cellular mechanisms in the innate immune system to induce immune tolerance in T cells, and (4) elucidating a role of a protein termed osteopontin (OPN), as both secreted (sOPN) and intracellular (iOPN) isoforms, in regulation of immune responses during infections and tumor development.  Although we are very active in EAE to study autoimmunity, other mouse models, such as psoriasis and colitis are ongoing.  As for infections, we are interested in fungal infections, which have not been well explored as bacterial and viral infections.  Cell types we study are mainly DCs, macrophages, and T cells.  By focusing on these immune cell types, we study impacts of infections on the development of autoimmunity.

Selected Publications

Inoue, M, and Shinohara, ML. "NLRP3 Inflammasome and MS/EAE." Autoimmune Dis 2013 (2013): 859145-.

Full Text

Inoue, M, Williams, KL, Gunn, MD, and Shinohara, ML. "NLRP3 inflammasome induces chemotactic immune cell migration to the CNS in experimental autoimmune encephalomyelitis." Proc Natl Acad Sci U S A 109, no. 26 (June 26, 2012): 10480-10485.

Full Text

Inoue, M, Williams, KL, Oliver, T, Vandenabeele, P, Rajan, JV, Miao, EA, and Shinohara, ML. "Interferon-β therapy against EAE is effective only when development of the disease depends on the NLRP3 inflammasome. (Published online)" Sci Signal 5, no. 225 (May 22, 2012): ra38-.

Full Text

Michalek, RD, Gerriets, VA, Nichols, AG, Inoue, M, Kazmin, D, Chang, C-Y, Dwyer, MA, Nelson, ER, Pollizzi, KN, Ilkayeva, O, Giguere, V, Zuercher, WJ, Powell, JD, Shinohara, ML, McDonnell, DP, and Rathmell, JC. "Estrogen-related receptor-α is a metabolic regulator of effector T-cell activation and differentiation." Proc Natl Acad Sci U S A 108, no. 45 (November 8, 2011): 18348-18353.

Full Text

Inoue, M, and Shinohara, ML. "Intracellular osteopontin (iOPN) and immunity." Immunol Res 49, no. 1-3 (April 2011): 160-172. (Review)

Full Text

Inoue, M, Moriwaki, Y, Arikawa, T, Chen, Y-H, Oh, YJ, Oliver, T, and Shinohara, ML. "Cutting edge: critical role of intracellular osteopontin in antifungal innate immune responses." J Immunol 186, no. 1 (January 1, 2011): 19-23.

Full Text

Shinohara, ML, Kim, J-H, Garcia, VA, and Cantor, H. "Engagement of the type I interferon receptor on dendritic cells inhibits T helper 17 cell development: role of intracellular osteopontin." Immunity 29, no. 1 (July 18, 2008): 68-78.

Full Text

Shinohara, ML, Kim, H-J, Kim, J-H, Garcia, VA, and Cantor, H. "Alternative translation of osteopontin generates intracellular and secreted isoforms that mediate distinct biological activities in dendritic cells." Proc Natl Acad Sci U S A 105, no. 20 (May 20, 2008): 7235-7239.

Full Text

Shinohara, ML, and Cantor, H. "Innate immune mechanisms that promote development of effector and regulatory CD4 lineages in EAE (Experimental Autoimmune Encephalomyelitis)." September 2006.

Scholars@Duke

Shinohara, ML, Lu, L, Bu, J, Werneck, MBF, Kobayashi, KS, Glimcher, LH, and Cantor, H. "Osteopontin expression is essential for interferon-alpha production by plasmacytoid dendritic cells." Nat Immunol 7, no. 5 (May 2006): 498-506.

Full Text

SHINOHARA, ML. "Osteopontin expression is essential for interferon-α production by plasmacytoid dendritic cells." Nat. Immunol. 7 (2006): 498-506.

Scholars@Duke

Shinohara, ML, Jansson, M, Hwang, ES, Werneck, MBF, Glimcher, LH, and Cantor, H. "T-bet-dependent expression of osteopontin contributes to T cell polarization." Proc Natl Acad Sci U S A 102, no. 47 (November 22, 2005): 17101-17106.

Full Text

Shinohara, ML, Correa, A, Bell-Pedersen, D, Dunlap, JC, and Loros, JJ. "Neurospora clock-controlled gene 9 (ccg-9) encodes trehalose synthase: circadian regulation of stress responses and development." Eukaryot Cell 1, no. 1 (February 2002): 33-43.

Scholars@Duke

Shinohara, ML, LoBuglio, KF, and Rogers, SO. "Comparison of ribosomal DNA ITS regions among geographic isolates of Cenococcum geophilum." Curr Genet 35, no. 5 (June 1999): 527-535.

Scholars@Duke

Shinohara, ML, Loros, JJ, and Dunlap, JC. "Glyceraldehyde-3-phosphate dehydrogenase is regulated on a daily basis by the circadian clock." J Biol Chem 273, no. 1 (January 2, 1998): 446-452.

Scholars@Duke

Pages